Curso Básico de Estadística para Ciencias Sociales

200 Horas
ONLINE
Este Curso básico de Estadística para Ciencias Sociales le ofrece una formación especializada en la materia. Hoy en día es muy importante tener cierto conocimiento estadístico para la comprensión y utilización de la información disponible a nuestro alrededor. Por eso, con este Curso de Estadística para Ciencias Sociales se ofrece los conocimientos necesarios para aquellos profesionales de las ciencias sociales que quieran realizar un análisis estadístico de los fenómenos sociales.
Curso Básico de Estadística para Ciencias Sociales Ampliar
210356-2101

UNIDAD DIDÁCTICA 1. ORÍGENES Y DESARROLLO DE LA ESTADÍSTICA

  1. Historia de la estadística
  2. Introducción a la estadística

UNIDAD DIDÁCTICA 2. CONCEPTOS BÁSICOS Y ORGANIZACIÓN DE DATOS ESTADÍSTICOS

  1. Introducción, concepto y funciones de la estadística
  2. Estadística descriptiva
  3. Estadística inferencial
  4. Medición y escalas de medida
  5. Variables: clasificación y notación
  6. Distribución de frecuencias
  7. Representaciones gráficas
  8. Propiedades de la distribución de frecuencias

UNIDAD DIDÁCTICA 3. ESTADÍSTICA DESCRIPTIVA

  1. Medidas de posición
  2. Medidas de dispersión
  3. Medidas de forma
  4. Curva de Lorenz, coeficiente de Gini e índice de Theil

UNIDAD DIDÁCTICA 4. DISTRIBUCIONES DE PROBABILIDAD

  1. Conceptos previos de probabilidad
  2. Variables discretas de probabilidad
  3. Distribuciones discretas de probabilidad
  4. Distribución normal
  5. Distribuciones asociadas a la distribución normal

UNIDAD DIDÁCTICA 5. TEOREMA CENTRAL DEL LÍMITE

  1. Introducción al Teorema Central del Límite
  2. Aproximación normal a la distribución binomial
  3. Teorema Central del Límite de Laplace
  4. Teorema Central del Límite y primeras demostraciones rigurosas
  5. Generalizaciones del Teorema Central del Límite

UNIDAD DIDÁCTICA 6. DISEÑOS MUESTRALES PROBABILÍSTICOS

  1. El muestreo aleatorio simple o irrestrictamente aleatorio
  2. Muestreo aleatorio estratificado
  3. Los estimadores indirectos: razón y regresión
  4. El muestreo aleatorio por conglomerados
  5. 5.Muestreo polietápico
  6. 6.Muestreo aleatorio sistemático
  7. Muestreo sistemático replicado
  8. La técnica de las submuestras interpenetrantes

UNIDAD DIDÁCTICA 7. LAS DISTRIBUCIONES MUÉSTRALES

  1. Qué es una distribución muestral
  2. Distribución muestral del estadístico media
  3. Distribución muestral del estadístico proporción

UNIDAD DIDÁCTICA 8. ESTIMACIÓN PUNTUAL DE PARÁMETROS

  1. Método de máxima verosimilitud
  2. Método de los momentos
  3. Relación entre el método de máxima verosimilitud y el de los momentos
  4. Propiedades deseables para un estimador paramétrico

UNIDAD DIDÁCTICA 9. CONTRASTE DE HIPÓTESIS

  1. Introducción a las hipótesis estadísticas
  2. Contraste de hipótesis
  3. Contraste de hipótesis paramétrico
  4. Tipologías de error
  5. Contrastes no paramétricos

UNIDAD DIDÁCTICA 10. ANÁLISIS DE VARIANZA: UN FACTOR DE EFECTOS ALEATORIOS

  1. Modelos de medidas repetidas

UNIDAD DIDÁCTICA 11. REGRESIÓN LINEAL

  1. Introducción a los modelos de regresión
  2. Modelos de regresión: aplicabilidad
  3. Variables a introducir en el modelo de regresión
  4. Construcción del modelo de regresión
  5. Modelo de regresión lineal
  6. Modelo de regresión logística
  7. Factores de confusión
  8. Interpretación de los resultados de los modelos de regresión

UNIDAD DIDÁCTICA 12. INTRODUCCIÓN A LA ESTADÍSTICA NO PARAMÉTRICA

  1. Estadística no paramétrica. Conceptos básicos
  2. Características de las pruebas
  3. Ventajas y desventajas del uso de métodos no paramétricos
  4. Identificación de las diferentes pruebas no paramétricas
  • Duración: 200 horas